Non-uniform attractor embedding for time series forecasting by fuzzy inference systems
نویسندگان
چکیده
A new method for identification of an optimal set of time lags based on non-uniform attractor embedding from the observed non-linear time series is proposed in this paper. Simple deterministic method for the determination of non-uniform time lags comprises the pre-processing stage of the time series forecasting algorithm which is implemented in the form of a fuzzy inference system. optimization of time lags but also determination of optimal dimension of the reconstructed phase space. Experiments done with benchmark chaotic time series show that the proposed method can considerably improve the forecasting accuracy. The proposed method seems to be an efficient candidate for prediction of time series with multiple time scales and noise. & 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
Time series forecasting by fuzzy inference systems based on optimal non-uniform attractor embedding in the multidimensional delay phase space is analyzed in this paper. A near-optimal set of time lags is identified by evolutionary algorithms after the optimal dimension of the reconstructed phase space is determined by the FNN (false nearest neighbors) algorithm. The fitness function is construc...
متن کاملSales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods
The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...
متن کاملModel Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series
Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملShort term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 72 شماره
صفحات -
تاریخ انتشار 2009